Pure Exploration in Multi-armed Bandits Problems
نویسندگان
چکیده
We consider the framework of stochastic multi-armed bandit problems and study the possibilities and limitations of strategies that explore sequentially the arms. The strategies are assessed in terms of their simple regrets, a regret notion that captures the fact that exploration is only constrained by the number of available rounds (not necessarily known in advance), in contrast to the case when the cumulative regret is considered and when exploitation needs to be performed at the same time. We believe that this performance criterion is suited to situations when the cost of pulling an arm is expressed in terms of resources rather than rewards. We discuss the links between simple and cumulative regrets. The main result is that the required exploration–exploitation trade-offs are qualitatively different, in view of a general lower bound on the simple regret in terms of the cumulative regret. We then refine this statement.
منابع مشابه
On Interruptible Pure Exploration in Multi-Armed Bandits
Interruptible pure exploration in multi-armed bandits (MABs) is a key component of Monte-Carlo tree search algorithms for sequential decision problems. We introduce Discriminative Bucketing (DB), a novel family of strategies for pure exploration in MABs, which allows for adapting recent advances in non-interruptible strategies to the interruptible setting, while guaranteeing exponential-rate pe...
متن کاملGeneric Exploration and K-armed Voting Bandits
We study a stochastic online learning scheme with partial feedback where the utility of decisions is only observable through an estimation of the environment parameters. We propose a generic pure-exploration algorithm, able to cope with various utility functions from multi-armed bandits settings to dueling bandits. The primary application of this setting is to offer a natural generalization of ...
متن کاملPure Exploration for Max-Quantile Bandits
We consider a variant of the pure exploration problem in Multi-Armed Bandits, where the goal is to find the arm for which the λ-quantile is maximal. Within the PAC framework, we provide a lower bound on the sample complexity of any ( , δ)-correct algorithm, and propose algorithms with matching upper bounds. Our bounds sharpen existing ones by explicitly incorporating the quantile factor λ. We f...
متن کاملValue Directed Exploration in Multi-Armed Bandits with Structured Priors
Multi-armed bandits are a quintessential machine learning problem requiring the balancing of exploration and exploitation. While there has been progress in developing algorithms with strong theoretical guarantees, there has been less focus on practical near-optimal finite-time performance. In this paper, we propose an algorithm for Bayesian multi-armed bandits that utilizes value-function-drive...
متن کاملRisk-Aversion in Multi-armed Bandits
Stochastic multi–armed bandits solve the Exploration–Exploitation dilemma and ultimately maximize the expected reward. Nonetheless, in many practical problems, maximizing the expected reward is not the most desirable objective. In this paper, we introduce a novel setting based on the principle of risk–aversion where the objective is to compete against the arm with the best risk–return trade–off...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009